Risk Factors Associated With Postoperative Complications Following Radical Cystectomy

(A Retrospective Cohort Study)

Master of Public Health Integrating Experience Project

Professional Publication Framework

Arman Tsaturyan, MD, MPH Candidate

Advising team:

Lusine Abrahamyan, MD, MPH, PhD Varduhi Petrosyan, MS, PhD Byron Crape, MSPH, PhD

College of Health Sciences

American University of Armenia

Yerevan, Armenia

2013

Table of Contents

Abstractiii
Acknowledgmentsiv
List of abbreviations v
Introduction1
Aims and research questions
Methods
Study design
Study population
Sample size
Study instrument
Data collection
Study variables
Statistical analysis7
Ethical considerations
Results
In-hospital complications
Univariable risk factors of complications10
Adjusted analysis of risk factors
Discussion 11
References16
Appendix 1: Sample size calculation24
Appendix 2: Medical Record Data Abstraction Form

Appendix 3: Data dictionary	. 33
Appendix 4: Details of multiple logistic regression analyses	. 43

Abstract

Background: Bladder cancer is the most often occurring cancer in the urinary system. At the time of diagnosis, one third of cases are already muscle invasive requiring radical cystectomy with or without chemotherapy and radiation therapy. Radical cystectomy is associated with high rates of postoperative complications.

Objective: The aim of the study was to assess postoperative complications of radical cystectomy in Armenia and explore associated risk factors.

Methods: The study utilized a retrospective cohort design. Study population included all patients who have undergone radical cystectomy followed by either continent or conduit urinary diversion from 2005 to 2012 in all hospitals of Armenia. Detailed medical chart review was conducted extracting information on baseline demographic and clinical characteristics, surgical intervention, postoperative management and in-hospital complications.

Results: The total study sample included 273 patients with radical cystectomy. The mean age (sd) of the patients was 58.5(8.9) years and the majority (n=255, 93.4%) were men. Overall, 28.9% (n =79) of patients experienced at least one in-hospital complication. The hospital mortality rate was 4.8% (n =13). The most commonly reported complications were postoperative ileus (n = 20 or 7.3%), wound infection (n =19 or 7.0%), pyelonephritis (n = 13 or 4.8%), and wound dehiscence (n = 9 or 3.3%). Multiple logistic regression analysis revealed that coronary artery disease (OR=2.44, 95% CI: 1.20 - 4.96, p=0.01), receiving a transfusion (OR=2.40, 95% CI: 1.36 - 4.24, p<0.01) and hospital volume (OR=2.09, 95% CI: 1.03 - 4.24, p=0.04 for the second higher volume hospital compared to the highest volume) were the significant predictors of postoperative complications.

Conclusions: The rate of postoperative complications following radical cystectomy in Armenia was similar to those observed in other countries. Hospital volume, presence of coronary artery disease and receiving transfusion were significant predictors of complications. Future prospective studies should evaluate the long-term outcomes, costs of the complications as well as the appropriateness of perioperative transfusion. Hospitals should standardize and improve the management of high risk patients. National health policy decisions makers should consider the evidence from this study with respect to observed association between hospital volume and risk of complications.

Acknowledgments

I would like to express my deep gratitude to my advisor Dr. Lusine Abrahamyan for her guidance, helpful comments and continuous support.

I am very grateful to Professors Byron Crape and Varduhi Petrosyan for their assistance and encouragement throughout the course of this research.

I am very thankful to the MPH Program Faculty of the American University of Armenia for the support and assistance.

I am thankful to the heads of the participating hospitals for their cooperation and for providing me with the opportunity to conduct the study.

List of abbreviations

- AIC Akaike information criterion
- ASA American Society of Anesthesiologists
- AUC area under the curve
- **BMI** body mass index
- CI confidence interval
- df degree of freedom
- **DIC** disseminated intravascular coagulation
- FFP fresh frozen plasma
- ICU Intensive care unit
- IRB Institutional Review Board
- LOS length of stay
- **OR** odds ratio
- **RBC** red blood cells
- ROC receiver operating characteristic
- **SD** standard deviation
- TUR transurethral resection

Introduction

Bladder cancer is the most often occurring cancer in the urinary system (1). It was the ninth most common cancer worldwide in 2008, with 386,300 newly diagnosed cases (2). To compare, in 2002 the estimated number of new cases worldwide was 356,000 from which 274,000 cases were diagnosed in males and 83,000 in females (3). It was the 7th most often occurring cancer in males with an age standardized rate of 10.1 per 100,000, and 17thin females with a rate of 2.5 per 100,000 in 2002. For white men, the lifetime probability to have the disease is more than 4% or 1 of 25 men eventually will develop a bladder cancer (3). In white women, the lifetime probability is 1.2% or 1 in 80 (3). The incidence rate of bladder cancer has a 10-fold variation among countries (1).

Considering the increasing burden of bladder cancer it is very important to understand the disease epidemiology. A systematic review reported that established risk factors of developing bladder cancer include smoking, aging, occupational exposure to aromatic amines, genetic predisposition, urinary tract diseases, urinary shistosomiasis, diet, exposure to certain microelements through drinking water, intake of some drugs, and tea, coffee, and alcohol consumption (1). Smoking is the most important risk factor of bladder cancer with established 2-3 times increased risk of incidence among ever smokers compared to nonsmokers (1). In 2008, it was estimated that smoking caused 34% of bladder cancer deaths among men and 13% among women in the world (2). Furthermore, the prevalence of smoking continues to increase in low-and middle-income countries while it is on decline in high-income countries (3). Compared to 1998, in 2008 the use of tobacco was increased by 16.1%, 8.7%, and 6.5% in Africa/Middle East, Eastern Europe/former Soviet Union, and Asia/Australia, respectively (3). Aging is another established risk factor contributing to development of bladder cancer (3). In 2050, the

1

world population is expected to increase by 2.5 billion people, half of the increase contributed by aging population (3). It is expected that the incidence of bladder cancer will continue to increase in the future in low- and middle-income countries due to increasing prevalence of the risk factors (3).

It has been reported that at the time of the diagnosis 30% of bladder cancers are already muscle invasive (4) for which the treatment includes surgery and/or chemotherapy and/or radiation therapy (5). Currently, radical cystectomy with extended lymph node dissection remains a gold standard for local control of muscle invasive bladder cancer (5). Radical cystectomy is a difficult surgery simultaneously done on urinary tract, intestines, and lymph nodes. The difficulty of the procedure is also associated with the type of urinary diversion (6). The surgery has a high incidence of both early and late complications (7). In various studies, the reported rate of surgical complications ranged from 25.7% to 64.0% (8-12). In a review of 23 studies conducted between 1999 and 2009 describing and evaluating the complications after radical cystectomy, the most reported complications included paralytic subileus (0 - 22.7%), gastrointestinal including emesis, gastritis, and ulcer (0 - 16.1%), wound infection (0 - 15.0%), cardiac diseases including myocardial infarction, dysrhythmia, cardiac arrest (0 -13.0%), urinary tract infections (0 - 12.8%), constipation (0 - 12.0%), wound dehiscence (0 - 9.0%), septicemia (0-9.0%), postoperative hemorrhage, transfusion of more than four units within 72 hours after the surgery (0-9.0%), enteroanastamosis leak (0-8.7%), enterocolitis/persistent diarrhea (0-8.0%), pneumonia (0 - 7.8%), pyelonephritis (0 - 7.4%), small bowel obstruction (0 - 7.0%), acute renal failure requiring dialysis or ultrafiltration (0 - 7.0%), and deep vein thrombosis (0 - 7.0%)(5.3%) (13). Other studies reported that the rates of infectious complications range from 24.4% to 25.0% (7,8,12), genitourinary from 11.0% to 16.8% (8,12), gastrointestinal from 14.8% to 29.0%(7,8,12) and wound related from 8.5% to 15.0% (7,8,12).

The framework for assessing postoperative complications of surgeries within the Department of Veterans Affairs National Surgical Quality Improvement Initiative consists of 'preoperative risk factors', 'structure of care', 'process of care' and 'outcomes' domains (9). There are many potentially modifiable and non-modifiable risk factors that can affect the rate of complications following cystectomy. The potential risk factors for developing complications can be classified into three groups (4,12-16). The first group, *preoperative factors*, include demographic factors (e.g., age, gender, BMI, smoking), co-morbid conditions (e.g., diabetes, renal failure, chronic obstructive pulmonary disease, gastro-intestinal disease, cardiovascular diseases), as well as cancer stage, prior surgeries, prior cancer treatment, type of the urinary diversion and American Society of Anesthesiologists (ASA) score (4,12-16). The second group, *operative factors*, include time of the surgery, blood loss, transfusion data, surgeon experience, type of anesthesia, extubation (4,12-14,16). The third group, *postoperative factors*, consists of length of intensive care unit stay, gastric tube removal, intestinal stimulation, stent removal, and length of stay (4,12-16).

Postoperative complications from radical cystectomy are associated with longer length of hospital stay (LOS), increased costs of care, and higher risk of in-hospital mortality (11). Therefore, predicting complications and minimizing the probability of their occurrence is very important.

According to the National Information Analytic Centre of Armenia, in 2011 in Armenia the estimated incidence rate of bladder cancer was 23.9 per 100,000 among men with 379 new diagnosed cases and 1.8 per 100,000 among women with 31 new cases (17). In 2011, the prevalence rate of bladder cancer was 54.1 per 100,000 (17). To the best of our knowledge, no prior study investigated complications following radical cystectomy in Armenia. Therefore, understanding the risk factors associated with the complications is very important and would help to guide strategizes that can improve patient care and outcomes.

Aims and research questions

The aim of the study was to assess the postoperative complications of radical cystectomy in Armenia and investigate potential risk factors of these complications. The specific objectives of the study were:

- To estimate the incidence of complications following radical cystectomy in hospitals of Armenia
- To evaluate the potential effects of demographic, behavioral and operative characteristics on postoperative complications following radical cystectomy
- To develop recommendations to improve patient care

The research questions of the study were:

- What is the incidence of complications following radical cystectomy in Armenian hospitals?
- What risk factors were associated with the complications following radical cystectomy?

Methods

Study design

The study utilized a retrospective cohort design enrolling all patients who have undergone radical cystectomy (followed by continent or conduit urinary diversion) in all hospitals of Armenia from 2005-2012. Taking into consideration that no hospitals in rural areas perform this type of surgery, the study accounted for all surgeries conducted in Yerevan hospitals. Patients were followed from the day of hospital admission to the day of discharge or death whichever occurred first during the index hospitalization. The rationale for choosing all hospitals was to ensure that the sample was large enough to obtain precise estimates and to have a representative sample for the population of Armenia. For the study purposes, medical records of all identified patients were retrieved and reviewed.

Study population

The target population for the study included patients with radical cystectomy for bladder cancer. Study population included all patients who have undergone radical cystectomy followed by either continent or conduit urinary diversion from 2005 to 2012 in all hospitals of Armenia. Patients who have received bilateral ureterocutaneostomy and/or those with missing medical records were excluded.

Sample size

Sample size was calculated based on intraoperative transfusion as the primary exposure of interest. Hollenbeck et al reported that in 2,538 radical cystectomy consecutive cases the observed complication rate was 37.6% in patients with intraoperative transfusion and 22.8% in

patients without transfusion (9). Considering 95% confidence interval, 80% power and a ratio of 70:30 (without transfusion: with transfusion), the required sample size was 380 patients in total (see Appendix 1for details). At the time of study planning it was not clear if the desired sample size would be feasible, and a decision was made to include all patients who had radical cystectomy between 2005 and 2012 in all eligible hospitals of Armenia. The timeframe was limited to seven years to minimize the impact of potential clinical practice or health policy changes on observed outcomes.

Study instrument

The student-investigator developed a data abstraction form to extract the information from medical records of the patients, after conducting a detailed review of relevant literature and consulting local experts. Information on patient demographic characteristics, comorbidities, preoperative laboratory analysis, operative variables, postoperative factors, and complications after radical cystectomy were extracted from medical records (Appendix 2). Data abstraction form has been pre-tested using the medical records of 10 patients with the same eligibility criteria who had surgery in 2013 and who were not part of this study. Based on the pre-test results some minor changes have been introduced.

Data collection

Medical chart review and data abstraction was conducted during March-April, 2013. First, all Yerevan hospitals that had urological departments and had a potential capacity of performing radical cystectomy were selected. Once it was established that this type of the surgery is performed in the hospital, permission to access patient data was sought from the

6

hospital administration. Next, the complete list of patients was obtained from the urological department of the hospital, and the medical records of patients meeting the eligibility criteria were reviewed.

Study variables

The dependent variable (outcome) for the current study was the presence or absence of complications after radical cystectomy as defined in the medical records. Main independent variables included age, gender, body mass index (BMI), smoking status, presence or absence of comorbid factors, type of urinary diversion, American Society of Anesthesiologists (ASA) score, intraoperative blood loss, operative time, presence or absence of transfusion, previous surgery, length of stay (LOS) at the intensive care unit (ICU). Appendix 3 presents the details of the study variables.

Statistical analysis

After chart abstraction data were entered into an SPSS 17.0 database (SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.). All statistical analyses were performed using SPSS 17.0 database and Stata 10 statistical software (StataCorp. 2007. Stata Statistical Software: Release 10. College Station, TX: StataCorp LP). Data cleaning was conducted through range checking and logical checking. Continuous variables were described using means and standard deviations, and categorical variables were described using frequencies and percentages. Independent t-test or Fisher's exact test was used to compare continuous variables and chi square test to compare categorical variables. Loess smooth curves were used to investigate the relationship between the dependent variable and continuous variables and to

decide on the appropriate cut-point, when applicable. Multiple logistic regression analysis was used to estimate the independent risk factors of developing any postoperative complication, after investigating for potential interactions and confounders. First, candidate variables for the model were selected based on the current literature and results from the univariate logistic regression analysis. Next, variables were added to the model one at a time and tested using the Loglikelihood Ratio test and Akaike information criterion (AIC). Model fit was tested by the Hosmer-Lemeshow goodness-of-fit test and area under the receiver operating characteristic (ROC) curve. Any variable with more than 10% missing values were excluded from the regression analysis. All results with the p value less than 0.05 were considered as statistically significant.

Ethical considerations

Institutional Review Board/Committee on Human Research (IRB) within the College of Health Sciences at the American University of Armenia approved the study. In addition, permissions have been received from the heads of the hospitals to access medical records and conduct the study. No personal identifiers (such as name of the patient, phone number, address) were abstracted from the medical records. Paper data abstraction forms were archived after data entry. The electronic data remained secure and only the student-investigator and the principal investigator had access to data.

Results

Eight hospitals were identified to perform radical cystectomy in Yerevan and in Armenia. Only one medical center performing 1-2 surgeries per year refused to participate. The medical records of all patients who had surgery between 2005 and 2012 in the participating hospitals were available for review. The total number of patients who had radical cystectomy with either continent or conduit urinary diversion between 2005 and 2012 in 7 hospitals of Armenia was 273. As the number of cases in four hospitals was low (less than 10 in each), it was decided to combine them into one group (hospital D in the analysis).

Table 1 represents patient baseline and operative characteristics. The mean age (standard deviation (sd)) of the patients was 58.5(8.9) years and the majority (n=255, 93.4%) were men. Approximately 77.0% of patients lived in cities and 43.2% were from Yerevan. The mean BMI (sd) was 26.0 (4.6). In 56.8% of cases cancer was confined to bladder. About 74.0% of patients were current smokers, 24.5% had preoperative hydronephrosis, 15.8% had coronary artery disease, 5.1% had diabetes, and 19.0% had hypertension. As for type of surgery, 85.7% have had continent urinary diversion and 14.3% conduit urinary diversion. The mean duration of the surgery was 326 minutes ranging from 150 to 660 minutes. The mean (sd) ICU length of stay (LOS) after the surgery was 2.4 days (1.0) and the mean hospital (sd) LOS was 35.7 (18.3) days.

In-hospital complications

In total, 110 in-hospital postoperative complications occurred in 79 patients (Table 2) representing 28.9% of the total sample. Among patients with complications, 54 (19.8%) had one complication, 20 (7.3%) had two and 5 (1.9%) patients had three or more. In-hospital mortality rate was 4.8% (13/273), and all patients that died developed some type of complication before that. The most commonly occurred complications were postoperative ileus (20/273 or 7.3%), wound infection (19/273 or 7.0%), pyelonephritis (13/273 or 4.8%), and wound dehiscence

(9/273 or 3.3%). No variations were observed in the type and rate of complications across the years of performed surgeries.

Univariable risk factors of complications

Results from univariable logistic regression analysis are presented in Table 3. There was a statistically significant difference in the rate of the complications between different hospitals. The probability of developing postoperative complications was 2.21 times higher (p=0.02, 95% CI: 1.13 – 4.33) in hospital B and 2.48 times higher (p=0.07, 95% CI: 0.92 – 6.68) in hospital D compared to hospital A which had the largest volume (n = 172) and was selected as a referent category. Presence of coronary artery disease (CAD) was also associated with the increased probability of developing complication (OR=2.51; 95% CI: 1.28 – 4.89, p<0.01). There were more complications among the patients with higher ASA score (OR=2.12; 95% CI: 1.18 - 3.80, p=0.01) as well as in patients who have received intraoperative and/or postoperative transfusion of fresh frozen plasma and/or red blood cells (OR=2.80; 95% CI: 1.63 – 4.79, p<0.01). Patients with preoperative blood glucose level higher than 5 mmol/l were 0.48 times less likely to develop postoperative complications (OR=0.48, 95% CI: 0.28-0.83, p<0.01). In addition, patients who have experienced one or more complications had longer preoperative LOS (OR=1.06; 95% CI: 1.02 – 1.09, p<0.01) and longer postoperative (OR=1.06: 95% CI: 1.04 – 1.08, p<0.01) LOS.

Adjusted analysis of risk factors

Multiple regression analysis was performed to find the independent risk factors of postoperative complications following radical cystectomy. The final model included the hospital

where the surgery was performed, CAD and operative and postoperative transfusion of fresh frozen plasma and/or red blood cells. No significant interactions were observed. The model had acceptable calibration and discrimination (Hosmer - Lemeshow goodness-of-fit test statistics = 8.69, p=0.12 and C-statistic=0.6718, respectively). Detailed analyses are presented in Appendix 4.

According to the final model, after adjusting for transfusion and hospital, patients with CAD had 2.4 times (95% CI: 1.20 - 4.96, p=0.01) higher risk for developing postoperative complications compared to those without. Receiving a transfusion increased the risk of developing complications by 2.4 times (95% CI: 1.36 - 4.24, p<0.01). Compared to Hospital A, patients in Hospital B had 2.1 times (95% CI: 1.03 - 4.24, p=0.04) higher risk of developing complications.

Discussion

The study investigated the associations between different preoperative, operative, and postoperative risk factors and the probability of developing postoperative complications among patients who have undergone radical cystectomy. To our knowledge this was the first study conducted in Armenia that included all patients who had radical cystectomy over the last seven years.

Our study population was not very different from those described in the literature by other studies (9,18). The rate of postoperative complications in all hospitals of Armenia was 28.9%, which was similar to the findings from previous studies (8-12). Furthermore, the most frequent types of complications observed in our study were postoperative ileus (7.3%), wound infection (7%), urinary tract infection (4.8%), and wound dehiscence (3.3%) which were similar

11

to observations from other studies (8,9,12,13,15,16,19-21). Postoperative mortality rate was 4.8% in our sample, higher than the rates described in past studies where it varied from 1.5% to 3.7% (8,22-24).

The observed association between the transfusion and development of postoperative complications was consistent with the results of past studies (9,12). In our study, the transfusion variable included both intraoperative and postoperative transfusions of both red blood cells and fresh frozen plasma and increased the risk of complications 2.4 times. The study by Hollenbeck et al that included 2,538 patients reported that the intraoperative transfusion increased the risk of complications by 1.4 times (9). Another study of 1,142 consecutive radical cystectomy patients also indicated increased risk of developing complications associated with transfusion. However, in the risk was increased in those patients who have received more than four packs of both red blood cells or fresh frozen plasma (12).

In our study we found that patients with CAD are at higher risk of developing postoperative complications. The result was consistent with the past studies (11,20). Previous studies also identified chronic pulmonary disease, diabetes, hypertension, weight loss, and fluid and electrolyte disorders to be significant predictors of postoperative complications (11,20). Unlike these larger sample size studies we did not observe similar associations. Moreover, we did not find a significant association between age, BMI and complications which was also observed in several past studies (9,12,16,20).

Several studies in the past reported a positive association between the ASA score (indicator of operative risk) and development of postoperative complications (9,12,16). In our univariable analysis ASA score was also statistically significantly associated with the increased risk of postoperative complications. However, it was no more significant in multivariable analysis.

12

Our study revealed that the mean days of hospital stay of patients with postoperative complications was significantly higher in comparison to patients without complications (34.8 versus 23.2 days respectively), ultimately increasing treatment costs as well. A US populationbased study that enrolled 6,577 patients from 1998 to 2002, reported that the median LOS for patients without complication was 9 days compared to 13 days for patients with complications (10). Each complication increased the LOS greatly and, in the case of multiple complications, a cumulative effect was observed. In terms of costs, each complication increased the expenditures by 35%, and the greatest expenditures were noticed in patients who have developed more than three complications. The study suggested that the decrease in the primary complication rate after cystectomy would lead to decreased cost of care and better outcomes (10). Comparing to this study, the hospital length of stay of patients in our sample was much longer which could be explained by several factors such as cost of care (each day in a US hospital is much higher than in Armenia), health care service structure (more developed outpatient services in the US than in Armenia, especially if Armenian patients come to the capital city from rural regions for a surgery), and, finally overall patient management.

Finally, we found that hospital volume was another important predictor of developing complications after the surgery – the hospital performing the highest number of surgeries had significantly fewer patients with complications. Similarly, past studies showed lower rate of complications and subsequently lower in-hospital mortality in higher volume centers (20,25). Surgeon experience was also found to be positively associated with postoperative complications following a radical cystectomy (5,9).

The standardized approach to data collection is one of the strengths of the study. The student – investigator pre-tested the data collection tool and then abstracted data from all medical

records. Another strength was the inclusion of almost all hospitals in Armenia that perform radical cystectomy and conducting a census of the targeted patient population. The post-hoc analysis demonstrated that the actual power of the study was very high (0.98).

The study results, however, should be interpreted under the light of some limitations. There was variability between the hospitals in the way patient medical history was gathered and clinical information was recorded. To minimize the potential effect of this variability, standardized measuring parameters and variable definitions were used. Some of the variables of interest had high missing rate such as smoking history. To avoid bias, any variable with more than 10% missing values were excluded from the final analysis. Another source of bias might be associated with the length of time period for which the medical records were abstracted. During study period some changes might have occurred in the hospitals resulting in changes of patient care. However, we did not observe variation in complication types and rates across these seven years. Another important limitation was that patients were from seven different hospitals. Although this increased the external validity of the findings, it might have also introduced differences in patient care processes and outcomes. We believe that the impact of this limitation was not significant since the majority of patients were treated in one hospital. Finally, as the information was collected retrospectively, it was impossible to evaluate the appropriateness of indications for transfusion.

Conclusions and recommendations

The study findings suggest that the postoperative complication rates after radical cystectomy in Armenia were similar to those observed in past studies and other countries. Hospital volume, presence of coronary artery diseases and receiving transfusion are significant

14

and independent predictors of postoperative complications. Future prospective studies should evaluate the long-term outcomes and costs of the complications as well as the appropriateness of perioperative transfusion.

Based on the results of current study the following recommendations are made:

- The indications for intraoperative and postoperative transfusions of RBC and FFP should be more carefully considered. Doctors should be encouraged to follow current guidelines to minimize the complications associated with the transfusion.
- Patients with coronary artery disease who undergo radical cystectomy should be considered as high-risk patients. Local or national treatment protocols should be developed to standardize and improve perioperative care of these patients.
- National health policy decisions makers should consider the evidence from this study
 with respect to observed association between hospital volume and risk of complications.
 Radical cystectomy should be performed by high-volume centers and more experienced
 surgeons. Low-volume hospital should consider providing additional training to their
 doctors and developing standardized protocols to improve patient care processes and
 outcomes.

References

- 1. Jankovic S, Radosavljevic V. Risk factors for bladder cancer Tumori 2007;93:4-12.
- American Cancer Society. Global Cancer Facts & Figures 2nd Edition. Atlanta: American Cancer Society; 2011. Available at: <u>http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/docum</u> <u>ent/acspc-027766.pdf</u>. Accessed on June 18, 2013.
- Ploeg M, Aben KK, Kiemeney LA. The present and future burden of urinary bladder cancer in the world. World J Urol 2009;27:289-93.
- 4. Pycha A, Comploj E, Martini T, et al. Comparison of complications in three incontinent urinary diversions. Eur Urol 2008;54:825-32.
- 5. Stenzl A, Cowan NC, De Santis M, et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 2011;59:1009-18.
- Hakenberg OW. Urinary diversion after radical cystectomy for muscle-invasive bladder cancer European Urology Supplements 2010;9:735.
- Lieberg F. Early complications and morbidity of radical cystectomy. European Urology Supplements 2010;9:25-30.
- Hautmann RE, Petriconi RC, Volkmer G. Lessons learned from 1000 neobladders: The 90-day complication rate The Journal of Urology 2010;184:990 - 994.
- Hollenbeck BK, Miller DC, Taub D, et al. Identifying risk factors for potentially avoidable complications following radical cystectomy. J Urol 2005;174:1231-7; discussion 1237.

- 10. Konety BR, Allareddy V. Influence of post-cystectomy complications on cost and subsequent outcome. J Urol 2007;177:280-7; discussion 287.
- Novotny V, Zastrow S, Koch R, Wirth MP. Radical cystectomy in patients over 70 years of age: impact of comorbidity on perioperative morbidity and mortality. World J Urol 2011;30:769-76.
- Shabsigh A, Korets R, Vora KC, et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. European Urology 2009;55:164-176.
- Lawrentschuk N, Colombo R, Hakenberg OW, et al. Prevention and management of complications following radical cystectomy for bladder cancer. Eur Urol 2010;57:983-1001.
- Bagrodia A, Grover S, Srivastava A, et al. Impact of body mass index on clinical and cost outcomes after radical cystectomy. BJU Int 2009;104:326-30.
- Stimson CJ, Chang SS, Barocas DA, et al. Early and late perioperative outcomes following radical cystectomy: 90-day readmissions, morbidity and mortality in a contemporary series. J Urol 2010;184:1296-300.
- Svatek RS, Fisher MB, Williams MB, et al. Age and body mass index are independent risk factors for the development of postoperative paralytic ileus after radical cystectomy. Urology 2010;76:1419-24.
- National Institute of Health. Health Statistics. Yerevan, Armenia: National Information Analytic Centre, 2012.
- Prasad SM, Ferreria M, Berry AM, et al. Surgical apgar outcome score: perioperative risk assessment for radical cystectomy. J Urol 2009;181:1046-52; discussion 1052-3.

- Baumgartner RG, Wells N, Chang SS, Cookson MS, Smith JA, Jr. Causes of increased length of stay following radical cystectomy. Urol Nurs 2002;22:319-23.
- 20. Konety BR, Allareddy V, Herr H. Complications after radical cystectomy: analysis of population-based data. Urology 2006;68:58-64.
- 21. Porena M, Mearini L, Zucchi A, Zingaro MD, Mearini E, Giannantoni A. Perugia ileal neobladder: functional results and complications. World J Urol 2012;30:747-52.
- 22. Maffezzini M, Campodonico F, Canepa G, Gerbi G, Parodi D. Current perioperative management of radical cystectomy with intestinal urinary reconstruction for muscle-invasive bladder cancer and reduction of the incidence of postoperative ileus. Surg Oncol 2008;17:41-8.
- 23. Mohanty NK, Kumar A, Vasudeva P, Jain M, Prakash S, Arora RP. Analysis of the perioperative and five-year oncological outcome of two hundred cases of open radical cystectomy: a single center experience. Indian J Cancer 2012;49:96-101.
- 24. Stein JP, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 2001;19:666-75.
- 25. Konety BR, Dhawan V, Allareddy V, Joslyn SA. Impact of hospital and surgeon volume on in-hospital mortality from radical cystectomy: data from the health care utilization project. J Urol 2005;173:1695-700.

Characteristics	n = 273
Age (years), mean \pm sd	58.5 ± 8.9
Male, n (%)	255(93.4)
Place of living, n (%)	
Urban	210(76.9)
Rural	63(23.1)
No in each hospital (%)	
A	172(63.0)
В	48(17.6)
С	34(12.5)
D	19(7.0)
Year of surgery, n (%)	
2011/12	57(20.9)
2009/10	86(31.5)
2007/08	81(29.7)
2005/06	49(17.9)
BMI (kg/m ²), mean \pm sd	26 ± 4.6
Current smoker, n (%)*	133(73.9)
Diabetes, n (%)	14(5.1)
Hypertension, n (%)	52(19.0)
Preoperative hydronephrosis, n (%)	67(24.5)
Preoperative chemotherapy, n (%)	22(8.1)
Any allergy, n (%)	18(6.6)
Any prior surgery, n (%)	104(38.1)
Urological diseases, n (%)	46(16.8)
Gastrointestinal diseases, n (%)	55(20.1)
Coronary artery disease, n (%)	43(15.8)
Respiratory diseases, n (%)	21(7.7)
Other diseases, n (%)	50(18.3)
Other cancer, n (%)	4(1.5)
Hemoglobin level (g/l), mean \pm sd	134.1 ± 18.7
Preoperative red blood cells count (x10 ¹² /L), mean \pm sd	4.15 ± 0.6
Preoperative white blood cells count (x10 ⁹ /L), mean \pm sd	7.48 ± 2.1
Preoperative glucose level (mmol/l), mean \pm sd	5.7 ± 1.9
Preoperative protein level (g/100ml), mean \pm sd	7.8 ± 0.6
Preoperative creatinin level (mkm/L), mean \pm sd	90.7 ± 24.8
Preoperative fibrinogen (mg/100ml), mean \pm sd	430.2 ± 120.6
Transurethral resection (TUR) in the past, n (%)	123(45.1)
Preoperative cystoscopy, n (%)	76(27.8)
Preoperative TUR biopsy, n (%)	60(22.0)
Stage of the cancer, n (%)	
Bladder confined (pT1-2 pN0 M0)	155(56.8)
Locally Advanced (pT3-4 pN0 M0)	86(31.5)
Extravesical (pT2-4N>0M0)	32(11.7)
Type of urinary diversion, n (%)	
Continent	234(85.7)
Conduit	39(14.3)
ASA score, n (%) *	

Table 1. Patient characteristics

1 or 2	180(71.7)
3 or 4	70(28.3)
Anesthesia type, (%)	
General	38(13.9)
Combined general and epidural	235(86.1)
Operative time (minutes), mean \pm sd	325.6 ± 81.5
Intraoperative and/or postoperative transfusion of RBC, n (%)	80(29.3)
Intraoperative and/or postoperative transfusion of FFP, n (%)	55(20.1)
Intraoperative and/or postoperative transfusion (RBC and/or FFP), n (%)	107(39.2)
Preoperative LOS (days), mean \pm sd	9.3 ± 8.4
ICU LOS (days), mean \pm sd	2.38 ± 1.0
Postoperative LOS (days), mean \pm sd	26.5 ± 14.3
Total LOS (days), mean \pm sd	35.7 ± 18.3

* 34.1% and 8.1% were missing for the variables "Current smoker" and "ASA", respectively. For these variables percentages were calculated after excluding missing values.

ASA=American Society of Anesthesilogists; BMI = body mass index; ICU=intensive care unit; FFP = fresh frozen plasma; LOS = length of stay; RBC = red blood cells; sd = standard deviation; TUR = transurethral resection

Complications	n (%)
No complication	194(71.1)
Postoperative ileus	20(7.3)
Wound infection	19(7.0)
Urinary tract infection	13(4.8)
Dehiscence	9(3.3)
Postoperative pneumonia	6(2.2)
Congestive heart failure	6(2.2)
Postoperative hemorrhage	5(1.8)
Myocardial infarction	4(1.5)
Pulmonary artery thrombosis	4(1.5)
Peritonitis	4(1.5)
Deep venous thrombosis	3(1.1)
Lymphocele	3(1.1)
Insufficiency of anastomosis of small bowel	3(1.1)
Postoperative acute renal failure	3(1.1)
Postoperative sepsis	2(0.7)
Bowel perforation	2(0.7)
Ischemic stroke	1(0.3)
Urinary leak	1(0.3)
Arrhythmia	1(0.3)
Disseminated intravascular coagulation	1(0.3)

 Table 2: Postoperative in-hospital complications (n = 273)

Characteristics	Unadjusted OR (95% CI)	P Value
Age	1.00(0.97-1.03)	0.83
Female gender	0.47(0.13-1.67)	0.24
Rural place of living	1.01(0.98-1.04)	0.54
Hospitals		
A	1.00	
В	2.21(1.13-4.33)	0.02
С	1.11(0.48-2.57)	0.8
D	2.48(0.92-6.68)	0.07
Year of surgery		
2011/12	1.00	
2009/10	1.09(0.62-1.90)	0.77
2007/08	0.75(0.42-1.36)	0.34
2005/06	0.86(0.43-1.72)	0.67
BMI	1.01(0.95-1.07)	0.73
Diabetes	1.38(0.45-4.26)	0.57
Hypertension	1.02(0.52-2.00)	0.95
Preoperative hydronephrosis	1.05(0.91-1.21)	0.50
Preoperative chemotherapy	1.44(0.58-3.58)	0.43
Any allergy	0.96(0.78-1.18)	0.71
Any prior surgery	0.86(0.50-1.49)	0.60
Urological diseases	1.27(0.64-2.52)	0.48
Gastrointestinal diseases	0.80(0.41-1.57)	0.51
Coronary artery disease	2.51(1.28-4.89)	< 0.01
Respiratory diseases	0.98(0.36-2.61)	0.96
Other diseases	0.97(0.49-1.93)	0.94
Other cancer	2.48(0.34-17.93)	0.37
Hemoglobin level	1.01(0.99-1.02)	0.44
Preoperative red blood cells count	1.25(0.77-2.02)	0.36
Preoperative white blood cells count	1.04(0.92-1.18)	0.49
Preoperative glucose level >5 mmol/L	0.48(0.28-0.83)	< 0.01
Preoperative protein level	1.00(0.63-1.58)	0.99
Preoperative creatinin level	1.01(1.00-1.02)	0.19
Preoperative fibrinogen	1.00	0.88
Transurethral resection (TUR) in the past	0.82(0.48-1.39)	0.47
Preoperative cystoscopy	0.98(0.90-1.07)	0.66
Preoperative TUR biopsy	0.98(0.88-1.08)	0.65
Conduit type of urinary diversion	0.82(0.38-1.77)	0.61
ASA score 3 and 4	2.12(1.18-3.80)	0.01
Combined general and epidural anesthesia	0.51(0.25-1.03)	0.06
Operative time	1.00	0.36
Intraoperative and postoperative transfusion (RBC and FFP)	2.80(1.63-4.79)	< 0.01
ICU LOS	0.99(0.76-1.29)	0.94

Table 3: Simple logistic regression analysis of postoperative complications

ASA=American Society of Anesthesilogist; BMI = body mass index; ICU=intensive care unit; FFP = fresh frozen plasma; LOS = length of stay; RBC = red blood cells; TUR = transurethral resection

Characteristics	Without	With	Odds Ratio	Р	
	complications (n)	complications (n)	(95%CI)	Value	
Hospital					
Hospital A	132	40	1.00		
Hospital B	25	23	2.09(1.03 - 4.24)	0.04	
Hospital C	27	6	1.26(0.52 - 3.06)	0.60	
Hospital D	9	10	1.79(0.63 - 5.10)	0.27	
CAD					
No	171	59	1.00		
Yes	23	20	2.44(1.20 - 4.96)	0.01	
Transfusion			· · · · ·		
No	131	34	1.00		
Yes	62	45	2.4(1.36 - 5.43)	< 0.01	

 Table 4: Multiple logistic regression analysis of postoperative complications (final model)

CAD= coronary artery disease

Appendix 1: Sample size calculation

EpiInfo Version 6 State	calc November 1993
-------------------------	--------------------

Unmatched Cohort and Cross-Sectional Studies (Exposed and Nonexposed)

Sample Sizes for 22.80 % Disease in Unexposed Group

Disease	Risk	Odds	Sample Size

Conf.	Power	Unex:Exp	in Exposed	Ratio Ratio	Unexp.	Exposed	Total

95.00 % 80.00	% 70:30	37.60 %	1.65 2.04	266	114	380
---------------	---------	---------	-----------	-----	-----	-----

Appendix 2: Medical Record Data Abstraction Form

Administrative Data						
1. Patient ID		2. Hospital ID				
3. Date of hospital admission	4. Date of surgery	5. Date of discharge				
/	//	//				
Demographic data						
6. Date of birth//	or age(only if date	of birth is missing)				
7. Gender 1.□ Ma	ale 2. Female 99. Unclea	ar/missing				
8. Height (cm)						
9. Weight (kg)						
10. Marital status 1.□ Single						
	2.□ Married					
3.□ Divorced						
4.□ Widowed						
99.□ Unclear/missing data						
11. Place of residence (Marz) 1. Verevan						
2.□Kotayq						
3.□Tavush						
4.□ Lori						
5.□Gegharquniq						
	6. Uayots Dzor					

7.□Syuniq				
8.□ Ararat				
	9.□Armavir			
10.□Aragatsotn				
	11.□Shirak			
	12.□Karabach			
	99.□ Unclear/missing data			
12. Place of living	$1.\square$ City			
	2.□ Village			
	99.□ Unclear/missing			
13. Current smoker	0.□ No 1.□Yes 99.□ Unclear/missing			
14. Former smoker	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing			
15. Presence of allergy	0.□ No 1.□Yes 99.□ Unclear/missing			
16. Duration of the disease (years)	(first symptom seen/felt as per patient report)			
17. Year of the first symptom				
18. First symptom seen by patient				
Comorbidities				
19. Diabetes	0.□ No 1.□Yes 99.□ Unclear/missing			
20. Hypertension	0.□ No 1.□Yes 99.□ Unclear/missing			
(diagnosed/defined by the admitting doctor))			
21. Preoperative hydronephrosis	$0.\square$ No $1.\square$ Yes $99.\square$ Unclear/missing			
(revealed by CT or sonography)				
21a. If yes \rightarrow which side?	1.□ Unilateral left			

	2.□ Unilateral right			
	3.□ Bilateral			
22. Acute preoperative renal failure	0.□ No 1.□Yes 99.□ Unclear/missing			
23. Preoperative dialysis	0.□ No 1.□Yes 99.□ Unclear/missing			
24. Preoperative chemotherapy	0.□ No 1.□Yes 99.□ Unclear/missing			
25. Preoperative radiotherapy	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing			
26. Undergone surgeries in the past	0.□ No 1.□Yes 99.□ Unclear/missing			
26a. If yes, specify \rightarrow				
27. Diseases in the past	0.□ No 1.□Yes 99.□ Unclear/missing			
27a. If yes, specify \rightarrow				
28. History of cerebrovascular diseases	0.□ No 1.□Yes 99.□ Unclear/missing			
(stroke, TIA)				
29. Urological diseases	0.□ No 1.□Yes 99.□ Unclear/missing			
29a. If yes, specify \rightarrow				
30. Gastrointestinal diseases	0.□ No 1.□Yes 99.□ Unclear/missing			
30a . If yes, specify →				
31. Cardiac diseases	0.□ No 1.□Yes 99.□ Unclear/missing			
31a. If yes, specify →				
32. Respiratory diseases	0.□ No 1.□Yes 99.□ Unclear/missing			
32a. If yes, specify \rightarrow				
33. Other cancer	0.□ No 1.□Yes 99.□ Unclear/missing			
33a. If yes, specify \rightarrow				
34. Gynecological diseases	0.□ No 1.□Yes 99.□ Unclear/missing			

34a. If yes, specify →	
35. Other diseases	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing
35a. If yes, specify →	
Laboratory analysis (In the cases of multiple	e analyses the measurements from the last analysis closest
to the surgery will be taken into consideration	1)
36. Blood group	0.□ I 1.□II 2.□III 1.□IV 99.□ Unclear/missing
37. Rhesus factor	0. Negative 1. Positive 99. Unclear/missing
38. Preoperative Hb(g/l)	
39. Preoperative red blood cells count (x 10	0 ¹² /L)
40. White blood count (x 10 ⁹ /L)	
41. Platelets (x 10 ⁹ /L)	
42. Glucose level (mmol/L)	
43. Preoperative total protein level (g/100n	nl)
44. Preoperative total bilirubin level (mkm	/1)
45. Preoperative creatinine level (mkm/l) _	
46. Preoperative fibrinogen (mg/100ml)	
47. Preoperative serum potassium mmol/L	·
48. Preoperative serum sodium mmol/L	
49. Hematuria	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing
50. Piuria	0.□ No 1.□Yes 99.□ Unclear/missing
51. Other changes in urine analysis	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing
51a. If yes, specify \rightarrow	
52. Transurethral resection (TUR) in the pa	ast 0.□ No 1.□Yes 99.□ Unclear/missing

52a. If yes \rightarrow When was it performed?	$1.\square < 1$ year before radical cystectomy
	2. \Box 1-2 before radical cystectomy
	$3.\square$ > 2 years before radical cystectomy
53. Preoperative cystoscopy	$0.\square$ No $1.\square$ Yes $99.\square$ Unclear/missing
54. Preoperative TUR biopsy of the tumor	0.□ No 1.□Yes 99.□ Unclear/missing
54a. If yes \rightarrow What does it reveal?	
55. Stage of the cancer	1.□ pT1N0M0
(from the pathological examination report)	2.□ pT2aN0M0
	3.□ pT2bN0M0
	4.□ pT3N0M0
	5.□ pT4N0M0
	6.□ pT2-4N1M0
Operative variables	
56. Type of the urinary diversion	1.□ Continent
	2.□ Conduit
	99. Unclear/missing
57. ASA score	1. □ 2. □ 3. □ 4. □ 5. □
(American Society of Anesthesiologists)	99.□ Unclear/missing
58. Anesthesia type	1. Spinal/epidural
	2.□ General
	3.□ Both
	99. Unclear/missing
59. Operative time (hrs)	

(from the start till the end of surgery (not anesthesia))		
60. Blood loss (ml)		
61. Intraoperative transfusion	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing	
(red blood cell (RBC))		
61a. If yes \rightarrow Total RBC transfused during the	e surgery (ml)	
62. Intraoperative transfusion	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing	
(other than RBC)		
If yes \rightarrow 62 <i>a</i> . What was transfused _		
62 b. How much in total was	s transfused (ml)	
63. The extent of lymphadenectomy	1. Limited	
	2.□ Standard	
	3. \Box Till the bifurcation of the aorta	
	4.□ Extended	
	99.□ Unclear/missing	
64. Number of removed lymph nodes	99. Unclear/missing	
65. Number of removed positive lymph nodes ((through pathological examination)	
66. Invasion of the lymphatic system	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing	
(through pathological examination)		
66a. If yes → Invasion side	1.□ Unilateral 2.□ Bilateral	
Postoperative factors		
67. Postoperative transfusion	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing	
(red blood cell (RBC))		
67a. If yes \rightarrow Total RBC transfused after the	e surgery (ml)	

68. Postoperative transfusion	$0.\square$ No $1.\square$ Yes 99. \square Unclear/missing
(other than RBC)	
If yes \rightarrow 68 <i>a</i> . What was transfused	
68b. How much in total was transfuse	ed (ml)
69. Length of stay at Intensive Care Unit (ICU) (c	lays)
70. Length of ureteral catheterization (days)	
71. Length of urethral catheterization (days)	
72. Bowel stimulation	0.□ No 1.□Yes 99.□ Unclear/missing
Complications after radical cystectomy	
73. Any postoperative complication	$0.\square$ No $1.\square$ Yes
<u>If No, stop here.</u>	
74. Postoperative ileus	$0.\square$ No $1.\square$ Yes
75. Urinary tract infection	$0.\square$ No $1.\square$ Yes
76. Postoperative sepsis	$0.\square$ No $1.\square$ Yes
77. Wound infection	$0.\square$ No $1.\square$ Yes
78. Postoperative acute renal failure	$0.\square$ No $1.\square$ Yes
79. Ureteral obstruction	$0.\square$ No $1.\square$ Yes
80. Urinary leak	$0.\square$ No $1.\square$ Yes
81. Arrhythmia	$0.\square$ No $1.\square$ Yes
82. Postoperative myocardial infarction	$0.\square$ No $1.\square$ Yes
83. Postoperative pneumonia	$0.\square$ No $1.\square$ Yes
84. Deep venous thrombosis	$0.\square$ No $1.\square$ Yes
85. Dehiscence	$0.\square$ No $1.\square$ Yes

86. Postoperative hemorrhage	0.□ No	1.□Yes
87. Other complications	0.□ No	1.□Yes
88a. If yes \rightarrow specify		
88. Number of complications		
89. Other symptoms not included in the complication	ations	_
90. Treatment of postoperative complications	1.□ Theraj	peutic
	2. Surgio	cal
	3. \Box Both	
	99. Unclea	ar/missing
91. In-hospital mortality	0.□ No	1.□Yes
If yes \rightarrow 92 <i>a</i> . Date of death//		
92 <i>b</i> . Cause of the death	1.□ Cor	nplications
(based on the pathanatomical conclusion	on) $2.\Box$ Oth	ner

Appendix 3: Data dictionary

Variable	Туре	Measure	Definition/Details
Demographic character	ristics		
Age	Numeric (continuous)	Years	
Gender	Binary	1=Male	
		2=Female	
Height	Numeric (continuous)	Cm	
Weight	Numeric (continuous)	Kg	
Marital Status	Nominal	1=single	
		2=married	
		3=divorced	
		4=widowed	
Place of residence	Nominal	1=Yerevan	The information
(Marz)		2= Kotayq	available on the first
		3=Tavush	page of the medical
		4=Lori	records
		5=Gegharquniq	
		6=VayotsDzor	
		7=Syuniq	
		8=Ararat	
		9=Armavir	
		10=Aragatsotn	
		11=Shirak	
		1	

Variable	Туре	Measure	Definition/Details
		12=Karabach	
Place of living	Nominal	1=City	
		2=Village	
Current smoker	Binary	0=No	The information can
		1=Yes	be found in
Former smoker	Binary	0=No	anesthesiologists' or
		1=Yes	surgical (anamnesis
Presence of allergy	Binary	0=No	vitae) records
		1=Yes	(reported by the
			patient)
			The information will
			be taken from
			anamnesis morbi
Duration of the disease	Numeric (continuous)	Months	First symptom
			seen/felt as per patient
			report
Year of the first	Numeric (continuous)	Year	Reported by the
symptom			patient
First symptom seen by	String		Reported by the
patient			patient
Comorbidities			

Variable	Туре	Measure	Definition/Details
Diabetes	Binary	0=No	Doctor's report
		1=Yes	
Hypertension	Binary	0=No	Doctor's report
		1=Yes	
Preoperative	Binary	0=No	Revealed either by
hydronephrosis		1=Yes	sonography or CT
Acute preoperative	Binary	0=No	Doctor's report
renal failure		1=Yes	
Preoperative dialysis	Binary	0=No	Doctor's report
		1=Yes	
Preoperative	Binary	0=No	Doctor's report
chemotherapy		1=Yes	
Preoperative	Binary	0=No	Doctor's report
radiotherapy		1=Yes	
Undergone surgeries in	Binary	0=No	Anamnesis vitae of
the past		1=Yes	the patient
Diseases in the past	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient
History of the	Binary	0=No	Anamnesis vitae of
cerebrovascular disease		1=Yes	the patient
(stroke, TIA)			
Urological diseases	Binary	0=No	Anamnesis vitae of

Variable	Туре	Measure	Definition/Details
		1=Yes	the patient
Gastrointestinal	Binary	0=No	Anamnesis vitae of
diseases		1=Yes	the patient
Cardiac diseases	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient
Respiratory diseases	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient
Other cancer	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient
Gynecological diseases	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient
Other diseases	Binary	0=No	Anamnesis vitae of
		1=Yes	the patient

Preoperative Laboratory Analysis

In the cases of multiple analyses the measurements from the last analysis closest to the surgery

will be taken into consideration)

Blood group	Nominal	I=0	Blood analysis
		1=II	
		2=III	
		3=IV	
Rhesus factor	Binary	0=Negative	Blood analysis
		1=Positive	

Variable	Туре	Measure	Definition/Details	
Hb	Numeric (continuous)	g/L	Blood analysis	
Red blood cell count	Numeric (continuous)	x10 ¹² /L	Blood analysis	
White blood cell count	Numeric (continuous)	x10 ⁹ /L	Blood analysis	
Platelets count	Numeric (continuous)	x10 ⁹ /L	Blood analysis	
Glucose level	Numeric (continuous)	mkm/L	Blood analysis	
Total protein level	Numeric (continuous)	mmol/L	Blood analysis	
Total bilirubin level	Numeric (continuous)	mkm/L	Blood analysis	
Creatinine level	Numeric (continuous)	mkm/L	Blood analysis	
Fibrinogen	Numeric (continuous)	mg/100ml	Blood analysis	
Serum potassium	Numeric (continuous)	mmol/L	Blood analysis	
Serum sodium	Numeric (continuous)	mmol/L	Blood analysis	
Hematuria	Binary	0=No	Urine analysis	
		1=Yes		
Piuria	Binary	0=No	Urine analysis	
		1=Yes		
Other changes in urine	Binary	0=No	Urine analysis	
analysis		1=Yes		
Transurethral resection	Binary	0=No	Anamnesis vitae of	
(TUR) in the past		1=Yes	the patient	
Preoperative	Binary	0=No	Doctor's report	
cystoscopy		1=Yes		
Preoperative TUR-	Binary	0=No	Doctor's report	

Variable	Туре	Measure	Definition/Details
biopsy of the tumor		1=Yes	
Stage of the cancer		1=pT1N0M0	Pathological
		2=pT2aN0M0	examination
		3=pT2bN0M0	
		4=pT3N0M0	
		5=pT4N0M0	
		6=pT2-4N1M0	
Operative Variables			
Type of the urinary	Nominal	1=Continent	Doctor's report
diversion		2=Conduit	
ASA score	Nominal	1=1	Anesthesiologist's
		2=2	report
		3=3	
		4=4	
		5=5	
Anesthesia type	Nominal	1=Spinal/epidural	Anesthesiologist's
		2=General	report
		3=Both	
Operative time	ve time Numeric (continuous)		Anesthesiologist's
			report
Blood loss	od loss Numeric (continuous)		Anesthesiologist's
			report or doctor's

Variable	Туре	Measure	Definition/Details		
			report		
Intraoperative	Binary	0=No	Anesthesiologist's		
transfusion		1=Yes	report or doctor's		
(red blood cell) (RBC)			report		
Intraoperative	Binary	0=No	Anesthesiologist's		
transfusion (other than		1=Yes	report or doctor's		
RBC)			report		
The extent of	Nominal	1=Limited	Doctor's report		
lymphadenectomy		2=Standard			
		3=Till the			
		bifurcation of the			
		aorta			
		4=Extended			
Number of removed	Numeric (continuous)	Number	Doctor's report		
lymph nodes					
Number of removed	Numeric (continuous)	Number	Pathological		
positive lymph nodes			examination		
Invasion of the	Binary	0=No	Pathological		
lymphatic system	tic system		examination		
Postoperative factors					
Postoperative	Binary	0=No	Anesthesiologist's		
transfusion (RBC)		1=Yes	report or doctor's		

Variable	Туре	Measure	Definition/Details	
			report	
Postoperative	Binary	0=No	Anesthesiologist's	
transfusion (other than		1=Yes	report or doctor's	
RBC)			report	
Length of the stay at	Numeric (continuous)		Anesthesiologist's	
Intensive Care Unit			report	
(ICU)				
Length of the ureteral	Numeric (continuous)		Doctor's report	
catheterization				
Length of the urethral	Numeric (continuous)		Doctor's report	
catheterization				
Bowel stimulation	Binary	0=No	Doctor's report	
		1=Yes		
Complications after			All complications	
Radical Cystectomy			reported by urologists	
			or by other physicians	
			(if possible supported	
			by sonography, X-Ray	
			or CT)	
Any postoperative	Binary	0=No	Doctor's report	
complication		1=Yes		
Postoperative ileus	Binary	0=No	Doctor's report	

Variable	Туре	Measure	Definition/Details	
		1=Yes		
Urinary tract infection	Binary	0=No	Doctor's report	
		1=Yes		
Postoperative sepsis	Binary	0=No	Doctor's report	
		1=Yes		
Wound infection	Binary	0=No	Doctor's report	
		1=Yes		
Postoperative acute	Binary	0=No	Doctor's report	
renal failure		1=Yes		
Ureteral obstruction	Binary	0=No	Doctor's report	
		1=Yes		
Urinary leak	Binary	0=No	Doctor's report	
		1=Yes		
Arrhythmia	Binary	0=No	Doctor's report	
		1=Yes		
Postoperative	Binary	0=No	Doctor's report	
myocardial infarction		1=Yes		
Deep venous	Binary	0=No	Doctor's report	
thrombosis		1=Yes		
Dehiscence	Binary	0=No Doctor's report		
		1=Yes		
Postoperative	Binary	0=No	Doctor's report	

Variable	Туре	Measure	Definition/Details	
hemorrhage		1=Yes		
Other complications	Binary	0=No	Doctor's report	
		1=Yes		
Number of	Numeric (continuous)	Number	Doctor's report (the	
complications			number for each	
			person who has	
			complications	
Other symptoms not	String		Doctor's report	
included in				
complications				
Treatment of	Binary	1=Therapeutic	Doctor's report	
postoperative		2=Surgical		
complications				
In-hospital mortality	Binary	0=No	Doctor's report	
		1=Yes		

Model 1	Complic	Odds Ratio	Std. Err.	Z	P > z	[95% Conf. Interval]	Log LL test
	_IHid_2	2.210884	.7569369	2.32	0.020	1.130164 4.325044	
	_IHid_3	1.114286	.4761703	0.25	0.800	.482226 2.574794	
	_IHid_4	2.47619	1.254092	1.79	0.073	.9176656 6.681649	
Model 2							
	_IHid_2	2.504176	.8763616	2.62	0.009	1.261183 4.972232	chi2(4)=15.2
	_IHid_3	1.057015	.4608571	0.13	0.899	.4497366 2.484299	p=0.0044
	_IHid_4	2.127065	1.110009	1.45	0.148	.7648591 5.915347	(compared
	CAD	2.718164	.9599756	2.83	0.005	1.360368 5.43119	to Model 1)
Model 3							
	_IHid_2	2.090717	.7532761	2.05	0.041	1.031837 4.236229	chi2(4)=24.4
	_IHid_3	1.267353	.5701548	0.53	0.598	.5247597 3.060799	p=0.0002
	_IHid_4	1.793559	.9561624	1.10	0.273	.6308595 5.099162	(compared
	CAD	2.4412	.8818815	2.47	0.013	1.202562 4.955634	to Model 2)
	Transfus	2.40242	.6953771	3.03	0.002	1.362291 4.236703	

Appendix 4: Details of multiple logistic regression analyses

Variables in the model: Hid = ID of the hospitals (A,B, C or D), CAD = coronary artery disease,

Transfus = receiving FFP/RBC transfusion

Assessment of the final model fit (Model 3)

1. Model calibration: Goodness-of-fit test

. lfit, group(10)

Number of observations = 272

Number of groups = 7

Hosmer-Lemeshow chi2 (5) = 8.69

Prob> chi2 = 0.1220

2. Model discrimination

. lroc

Logistic model for Postopcompl

Number of observations = 272

Area under ROC curve = 0.6718

Figure. Area under ROC curve

